Unit-V
|IC and Design Technology

Contents
IC Technology:

* Introduction

* Full-Custom (VLSI) Technology

* Semicustom(ASIC) IC Technology

* Programmable Logic Devices(PLD) IC Technology
Design Technology:

* Automation: Synthesis

* Verification: Hardware Software Co-simulation

* Reuse: Intellectual Property cores

* Design Process Models

Introduction

CMOS transistor:

* Source, Drain
— Diffusion area where electrons can flow
— Can be connected to metal contacts (via’s)

* Gate
— Polysilicon area where control voltage is applied
 Oxide

— Si O, Insulator so the gate voltage can’t leak

A positive ... attracts electrons here,
voltage here... turning the channel
between source and drain
into a conductor.

gate

source drain

* Every dimension of the MOSFET has to scale

— (PMOS) Gate oxide has to scale down to
* Increase gate capacitance
* Reduce leakage current from Sto D
* Pinch off current from source to drain

— Current gate oxide thickness is about 2.5-3nm
 That’s about 25 atoms!!!

IC package

Silicon substrate

Proposed Structures: FInFET

Body is a Thin Silicon Film
Double Gate Structure + Raised Source Drain

Gate

Silicon
Fin

X, Huang, et al, 1999 [EDM, p.&7-70

 FinFET has been manufactured to
18nm

— Still acts as a very good transistor

e Simulation shown that it can be scaled

to 10nm
— Quantum effect start to kick in
* Reduce mobility by ~10%
— Ballistic transport become significant
* |Increase current by about ~20%

Gate

NAND

Metal layers for routing (~10)

PMOS don’t like O

NMOS don’t like 1

A stick diagram form the basis for mask sets

! vdd
metal2 layer i
X ‘d b_ y oxide layer
metall layer

— F = (xy)' oxide layer

% polysilicon layer

oxide layer
v pdiff ndiff |
") S

silicon substrate

0 —

Silicon manufacturing steps

Tape out
— Send design to manufacturing
Spin
— One time through the manufacturing process
Photolithography
— Drawing patterns by using photoresist to form barriers for deposition

Design : Manufacturing
Structural ~ Mask Layering Wafer Chip cutout
design creation [] on silicon [testing [™] /packaging

Layout
design

Full Custom

Very Large Scale Integration (VLSI)
Placement
— Place and orient transistors
Routing
— Connect transistors
Sizing
— Make fat, fast wires or thin, slow wires
— May also need to size buffer

Design Rules

— “simple” rules for correct circuit function
* Metal/metal spacing, min poly width...

START
Designers create layouts

; for basic components.

H

¥

ALU

)
DDDOD

Designers place the
components, resulting in
masks.

e

Designers provide the
connections among
components, which are
translated to masks.

The masks are sent to the
fabrication plant to
produce ICs.

ICs are now ready to
be tested/used.

daiw

* Best size, power, performance =S

Full Custom

* Hand design
— Horrible time-to-market/flexibility/NRE cost...
— Reserve for the most important units in a processor
e ALU, Instruction fetch...
* Physical design tools
— Less optimal, but faster...

10

vdd

Semi-Custom

* Gate Array B P
— Array of prefabricated gates E [iﬁ H

— “place” and route iiRlE=aln

— Higher density, faster time-to-market _i_i_ _i

— Does not integrate as well with full-custom E =J§ a i
LR)

e Standard Cell
— Alibrary of pre-designed cell

— Place and route

— Lower density, higher complexity

AND 2
OR 3
AND 2
FF

— Integrate great with full-custom

11

Semi-Custa

* Most popular design style

e Jack of all trade

12

— Good

* Power, time-to-market,
performance, NRE cost, per-unit

cost, area...

e Master of none

— Integrate with full custom for
critical regions of design

Gate array

Designers are provided
with a set of masks of

predeﬁncd %ateq

START

Designers provide the
connections among

gates, which are

translated to masks.

L_\l"_\l_\
53%

o Po Po

AVl

i
i
H
H
§

i
f
i
t
¢
i
H
4

The masks are sent to the !
fabrication plant to
produce ICs.

ICs are now ready to

be tested/used.

il

i
i

i
i

Standard cell

Designers are provided
with a library of
predeblgncd cells.

dEirs, W !
oo ;&?&Eﬁ

H f).:, p P o E
s :;m_.ﬁ A} i

7o SSTART = p
Demgners choose cells,
(place and connect them,

\ resulting in masks. |

Designers provide the
connections among
cells, which are
translated to masks.

e
i)

The masks are sent to the
fabrication plant to
produce ICs.

ICs are now ready to
be tested/used.

v

‘Prﬂgrammabfe Logic Array (PLA) I

FLA exploits
structure of
express ion.

T o TS
o
T
A F=AB+C
J_..j

ik ik Ity G=AB+C+AB

| | | Y ¥
A A B B C ¢ F G

14

Programmable Logic Device

Programmable Logic Device

— Programmable Logic Array, Programmable Array Logic, Field Programmable Gate
Array

All layers already exist
— Designers can purchase an IC
— To implement desired functionality
* Connections on the IC are either created or destroyed to implement
Benefits
— Very low NRE costs
— Great time to market

Drawback
— High unit cost, bad for large volume

— Power
* Except special PLA 1600 usable gate, 7.5 ns

— slower $7 list price

Xilinx FPGA

<
Hl=
/O BLOCKS

aT7R

/

En_n/n_/ﬂ_‘nun_n_ = =]=f=)=g =]

BOOGOOOOOOE
BOOOOO000F
BOOOGOO0E
EGOOO480G0001
BEOOOOO0008
B QRGOS

B oanand
g N ERENENERY
=] Od Qonoom o .

i

i

11|

LI e

ua i

FROGRaMMABLE

INTERCONWECT

LOGIC BLOCKS

Configurable Logic Block (CLB)

4
01 ++ + 04 ra YB T T |
Hy DinfHz [SRiHg EC
Gg —] SR Eypeass
L—" CONTROL |—
= B E-\N‘ 30 e
FUMCTION = | | % i o
0OF i 0
Gz —] Gl4sd
G |
LG T \W =
L] FoncTion \\I o
OF 1= [
F.G, B ’ —
AN D 5
H1
e =R Eypans
[~ COWTROL
Fe —] _loGE E‘N 50 &
FURCTION o i o
Fa — i "
.___.-"
Fi — 1
EC
- RO
(CLOCK) 1 A
;B x

Fuliplexer Controlled
by Configuration Program

Figure 1: Simplified Block Dlagram of XC4000-Serles CLB (RAM and Carry Loglc functions not shown)

| |
; Pasaire :
: sew Bate| | pulkUps |
I ntrc FulkDown '
1 HH.N :
l [: L |
g I
|~ I
I
I D ™., Flip-Flzp \ :
1
! Do) i
Ot ——— | Output :
: _DU_“‘HH —~E Buffer :
—+
I
Cutput
Clock T % |~
: »
l{ +——

Clock
Enable

[n put
Clock

1/0 Block

Flip-
—‘ Flop!

Latch
_l o D

AR

Simpiffled Block Diagram of X C4000E (OB

Far

Design Technology

Introduction

* Design task
— Define system functionality

— Convert functionality to physical implementation while
» Satisfying constrained metrics
* Optimizing other design metrics

* Designing embedded systems is hard
— Complex functionality

* Millions of possible environment scenarios
* Competing, tightly constrained metrics
— Productivity gap
* Aslow as 10 lines of code or 100 transistors produced per day

Improving productivity

* Design technologies developed to improve productivity

* We focus on technologies advancing hardware/software unified
view

— Automation

Specificat
* Program replaces manual design Automa || ion
* Synthesis tion
— Reuse Verificati - R
| erificati Implement euse
* Predesigned components on atlr;hlzl] 10
* Cores

* General-purpose and single-purpose processors on single IC
— Verification

* Ensuring correctness/completeness of each design step

* Hardware/software co-simulation

Automation: synthesis

Early design mostly hardware
Software complexity increased with advent

of general-purpose processor The codesign ladder
Different techniques for software design
and hardwa re deSlgn Sequential program code (e.g., C, VHDL)

— Caused division of the two fields

Behavioral synthesis

Design tools evolve for higher levels of Compilers (1590s)
d bSt ra CtiO n (19605,1570s) Register transfers
— Different rate in each field —— RT synthesis
Assembly instructions (1980s, 1990s)

Hardware/software design fields rejoining

Logic equations / FSM's

— Both can start from behavioral description

Assemblers, linkers

H H Logic synthesis
in sequential program model (19505, 1960s) e 10800
— 30 years longer for hardware design to
reaCh thlS Step in the Iadder Machine instructions Logic gates
. . J J
* Many more design dimensions mpleMéenaprotessor plus VLSI, ASIC, or PLD

program bits implementation

* Optimization critical

Hardware/software parallel evolution

* Software design evolution

Machine instructions

Assemblers

* convert assembly programs into machine
instructions

Compilers
* translate sequential programs into assembly

* Hardware design evolution

Interconnected logic gates
Logic synthesis

* converts logic equations or FSMs into gates
Register-transfer (RT) synthesis

* converts FSMDs into FSMs, logic equations,
predesigned RT components (registers,
adders, etc.)

Behavioral synthesis
* converts sequential programs into FSMDs

The codesign ladder

Sequential program code (e.g., C, VHDL)

Behavioral synthesis

(1990s)
Compilers

(1960s,1970s)
Register transfers

RT synthesis
Assembly instructions (1980s, 1990s)

Logic equations / FSM's

Assemblers, linkers

(1950s, 1960s) Logic synthesis
(1970s, 1980s)

Machine instructions Logic gates
Y
mpleMéerapi@sessor plus VLSI, ASIC, or PLD
program bits implementation

Increasing abstraction level

Higher abstraction level focus of hardware/software design evolution

— Description smaller/easier to capture
* E.g., Line of sequential program code can translate to 1000 gates
— Many more possible implementations available

* (a) Like flashlight, the higher above the ground, the more ground illuminated

— Sequential program designs may differ in performance/transistor count by orders of
magnitude

— Logic-level designs may differ by only power of 2

* (b) Design process proceeds to lower abstraction level, narrowing in on single
implementation

idea

back-of-the-envelope
sequential program

AN register-transfers
lodic

implemen implemen

tatity tatidR)

modeling cost increases
opportunities decrease

Synthesis

 Automatically converting system’s behavioral description to a structural
implementation

— Complex whole formed by parts
— Structural implementation must optimize design metrics

* More expensive, complex than compilers
— Cost = $100s to $10,000s
— User controls 100s of synthesis options
— Optimization critical
e Otherwise could use software
— Optimizations different for each user
— Run time = hours, days

Gajski’s Y-chart

Each axis represents type of description

— Behavioral
* Defines outputs as function of inputs
* Algorithms but no implementation Structural Behavior
— Structural .
* Implements behavior by connecting Processors, Sequentlal
components with known behavior mRég@sft'@ﬁs, FUs, Reragams
— Physical MUX%ates, flip- Logdi@nsfers
» Gives size/locations of components and f] . ES
wires on chip/board OPS Transis Tra@ﬂ?@ﬂ'ons/
Synthesis converts behavior at given level tors 1 fulétions
to structure at same level or lower Cell
- E.g, Mydut
* FSM - gates, flip-flops (same level) T Esip
* FSM - transistors (lower level) 1T Boar
* FSM X registers, FUs (higher level) PhysiEiS

* FSM X processors, memories (higher level) |
d

Logic synthesis

* Logic-level behavior to structural implementation
— Logic equations and/or FSM to connected gates
 Combinational logic synthesis

— Two-level minimization (Sum of products/product of sums)

* Best possible performance
— Longest path = 2 gates (AND gate + OR gate/OR gate + AND gate)
* Minimize size
— Minimum cover
— Minimum cover that is prime
— Heuristics
— Multilevel minimization
* Trade performance for size

* Pareto-optimal solution
— Heuristics

 FSM synthesis
— State minimization
— State encoding

Two-level minimization

Represent logic function as sum of
products (or product of sums) Sum of products
— AND gate for each product F=abc'd +a'b'cd +

— OR gate for each sum a'bcd +ab'cd
Gives best possible performance Direct implementation
— At most 2 gate delay a
. bH [

Goal: minimize size

-
C :>_|_ _r
o]
— Minimum cover d j—a:)
-

* Minimum # of AND gates (sum of products) s
— Minimum cover that is prime 4 4-input AND
e Minimum # of inputs to each AND gate (sum of gates and
products) 1 4-input OR gate

— 40 transistors

Minimum cover

Minimum # of AND gates (sum of products)
Literal: variable or its complement
— aora,borb’ etc.
Minterm: product of literals
— Each literal appears exactly once
* abc’'d’, ab’cd, a’bcd, etc.
Implicant: product of literals
— Each literal appears no more than once
* abc'd’, a’cd, etc.
— Covers 1 or more minterms
e a’cd covers a’bcd and a’b’cd

Cover: set of implicants that covers all minterms of function
Minimum cover: cover with minimum # of implicants

Minimum cover: K-map approach

Karnaugh map (K-map)
— 1 represents minterm
— Circle represents implicant

Minimum cover

— Covering all 1’s with min # of
circles
— Example: direct vs. min cover

* Less gates
— 4vs.5

* Less transistors
— 28vs.40

K-map: sum of products

o

ab
00
01
11

10

d

00 o1

11 10

1

O[O |o
(@) o)) (]

(o) ol e}]

1
0
1

Minimum cover

K-map: minimum cover

cd

ab N\ 00 01 11 10

00

01

11

o =0 IO
@) ol o))
|—\O|—4‘ri—‘
(@) o) el)

10

F=abc'd'+ a'cd + ab'cd

Minimum cover implementation

a

=D

b —14 _—Bg:}
pod

C |/

d =

2 4-input AND
gate

1 3-input AND
gates

14 input OR
gate

- 28
transistors

Minimum cover that is prime

* Minimum # of inputs to AND gates

K-map: minimum cover that is prime

* Prime implicant b
— Implicant not covered by any other ® 0 0 1Yo
implicant 010 10

: : : S0 00

— Max-sized circle in K-map vl b 1o

 Minimum cover that is prime
— Covering with min # of prime implicants
— Min # of max-sized circles

— Example: prime cover vs. min cover
* Same # of gates

Minimum cover that is prime

F=abc'd'+ a'cd + b'cd

Implementation

d
— 4vs. 4 = r 1 4-input AND
e Less transistors ° bef)
c D Bai gate
— 26vs. 28 5 w—} 2 3-input AND
gates
14 input OR
gate

- 76

Minimum cover: heuristics

 K-maps give optimal solution every time
— Functions with > 6 inputs too complicated

— Use computer-based tabular method
* Finds all prime implicants
* Finds min cover that is prime
e Also optimal solution every time
* Problem: 2" minterms for n inputs

— 32 inputs = 4 billion minterms
— Exponential complexity

* Heuristic
— Solution technique where optimal solution not guaranteed
— Hopefully comes close

Heuristics: iterative improvement

e Start with initial solution
— i.e., original logic equation
* Repeatedly make modifications toward better solution

« Common modifications

— Expand
* Replace each nonprime implicant with a prime implicant covering it
* Delete all implicants covered by new prime implicant

— Reduce
* Opposite of expand

— Reshape
* Expands one implicant while reducing another
* Maintains total # of implicants

— Irredundant
* Selects min # of implicants that cover from existing implicants

* Synthesis tools differ in modifications used and the order they are used

Multilevel logic minimization

Trade performance for size

33

Increase delay for lower # of gates

Gray area represents all possible
solutions
Circle with X represents ideal solution
* Generally not possible
2-level gives best performance
* max delay = 2 gates
* Solve for smallest size

Multilevel gives pareto-optimal
solution
* Minimum delay for a given size
* Minimum size for a given delay

delay

minim. size

Example

Minimized 2-level logic function:
— F =adef + bdef + cdef + gh
— Requires 5 gates with 18 total gate inputs
e 4 ANDS and 1 OR
After algebraic manipulation:
— F=(a+b+c)def +gh
— Requires only 4 gates with 11 total gate inputs
e 2 ANDS and 2 ORs
— Less inputs per gate
— Assume gate inputs = 2 transistors
* Reduced by 14 transistors
— 36(18 *2) downto 22 (11 * 2)
— Sacrifices performance for size
* Inputs a, b, and c now have 3-gate delay

Iterative improvement heuristic commonly
used

2-level minimized

a
d
b
e
c
f
g
h

)
S
37

multilevel minimized

:_t)_‘

> 0 hDQ O TO

=0

FSM synthesis

* FSM to gates

 State minimization

— Reduce # of states

* |dentify and merge equivalent states
— Outputs, next states same for all possible inputs
— Tabular method gives exact solution
» Table of all possible state pairs
» If n states, n? table entries
» Thus, heuristics used with large # of states

e State encoding
— Unique bit sequence for each state
— If n states, log,(n) bits
— nl possible encodings
— Thus, heuristics common

Technology mapping

e Library of gates available for implementation
— Simple
e only 2-input AND,OR gates
— Complex

* various-input AND,OR,NAND,NOR,etc. gates
* Efficiently implemented meta-gates (i.e., AND-OR-INVERT,MUX)

e Final structure consists of specified library’s components only
* If technology mapping integrated with logic synthesis
— More efficient circuit

— More complex problem
— Heuristics required

Complexity impact on user

As complexity grows, heuristics used

Heuristics differ tremendously among synthesis tools

— Computationally expensive
* Higher quality results
* \Variable optimization effort settings
* Longrun times (hours, days)
* Requires huge amounts of memory
* Typically needs to run on servers, workstations

— Fast heuristics
* Lower quality results
* Shorter run times (minutes, hours)
* Smaller amount of memory required
e Could runonPC

Super-linear-time (i.e. n3) heuristics usually used

— User can partition large systems to reduce run times/size
— 1003 > 503 + 503 (1,000,000 > 250,000)

Integrating logic design and physical
design

* Past
— Gate delay much greater than wire delay

— Thus, performance evaluated as # of levels
of gates only

 Today
o . I A
— Gate delay shrinking as feature size . R A Wire
shrinkin
. & . . > ‘. R A ® Transistor
— Wire delay increasing o Ay, -A.A.
* Performance evaluation needs wire length ‘oo

— Transistor placement (needed for wire
length) domain of physical design

— Thus, simultaneous logic synthesis and
physical design required for efficient
circuits

Reduced feature size

Register-transfer synthesis

* Converts FSMD to custom single-purpose processor

— Datapath
» Register units to store variables
— Complex data types
* Functional units
— Arithmetic operations
* Connection units
— Buses, MUXs
— FSM controller
» Controls datapath

— Key sub problems:
* Allocation
— Instantiate storage, functional, connection units
* Binding
— Mapping FSMD operations to specific units

Behavioral synthesis

High-level synthesis
Converts single sequential program to single-purpose processor
— Does not require the program to schedule states

Key sub problems
— Allocation
— Binding
— Scheduling
* Assign sequential program’s operations to states
* Conversion template given in Ch. 2
Optimizations important
— Compiler
* Constant propagation, dead-code elimination, loop unrolling

— Advanced techniques for allocation, binding, scheduling

System synthesis

* Convert 1 or more processes into 1 or more processors
(system)
— For complex embedded systems

* Multiple processes may provide better performance/power
* May be better described using concurrent sequential programs

e Tasks

— Transformation
* Can merge 2 exclusive processes into 1 process
* Can break 1 large process into separate processes
* Procedure inlining
e Loop unrolling
— Allocation

* Essentially design of system architecture
— Select processors to implement processes
— Also select memories and busses

System synthesis

e Tasks (cont.)

— Partitioning
* Mapping 1 or more processes to 1 or more processors
* Variables among memories
* Communications among buses

— Scheduling
* Multiple processes on a single processor
* Memory accesses
* Bus communications

— Tasks performed in variety of orders
— Iteration among tasks common

System synthesis

* Synthesis driven by constraints

— E.g.,
* Meet performance requirements at minimum cost
— Allocate as much behavior as possible to general-purpose processor
» Low-cost/flexible implementation
— Minimum # of SPPs used to meet performance

e System synthesis for GPP only (software)
— Common for decades

* Multiprocessing
* Parallel processing
* Real-time scheduling
* Hardware/software codesign
— Simultaneous consideration of GPPs/SPPs during synthesis
— Made possible by maturation of behavioral synthesis in 1990’s

Temporal vs. spatial thinking

* Design thought process changed by evolution of synthesis
* Before synthesis

— Designers worked primarily in structural domain
* Connecting simpler components to build more complex systems

— Connecting logic gates to build controller
— Connecting registers, MUXs, ALUs to build datapath

— “capture and simulate” era

* Capture using CAD tools

* Simulate to verify correctness before fabricating
— Spatial thinking

e Structural diagrams

e Data sheets

Temporal vs. spatial thinking

After synthesis
— “describe-and-synthesize” era
— Designers work primarily in behavioral domain

— “describe and synthesize” era
* Describe FSMDs or sequential programs
* Synthesize into structure
— Temporal thinking
» States or sequential statements have relationship over time

Strong understanding of hardware structure still important

— Behavioral description must synthesize to efficient structural
implementation

Verification

e Ensuring design is correct and complete

— Correct
* Implements specification accurately

— Complete
* Describes appropriate output to all relevant input

* Formal verification
— Hard
— For small designs or verifying certain key properties only

e Simulation

— Most common verification method

Formal verification

* Analyze design to prove or disprove certain properties

* Correctness example
— Prove ALU structural implementation equivalent to behavioral
description
* Derive Boolean equations for outputs
* Create truth table for equations
* Compare to truth table from original behavior

 Completeness example

— Formally prove elevator door can never open while elevator is moving
* Derive conditions for door being open
e Show conditions conflict with conditions for elevator moving

Simulation

* Create computer model of design
— Provide sample input
— Check for acceptable output

e Correctness example

— ALU
* Provide all possible input combinations
* Check outputs for correct results

 Completeness example

— Elevator door closed when moving
* Provide all possible input sequences
* Check door always closed when elevator moving

Increases confidence

Simulating all possible input sequences impossible for most
systems
— E.g., 32-bit ALU
o 232% 232 =264 hossible input combinations
* At 1 million combinations/sec
* % million years to simulate
» Sequential circuits even worse

Can only simulate tiny subset of possible inputs

— Typical values

— Known boundary conditions
 E.g., 32-bit ALU
— Both operands all 0’s
— Both operands all 1’s

Increases confidence of correctness/completeness
Does not prove

Advantages over physical
implementation

e Controllability

— Control time
» Stop/start simulation at any time

— Control data values
* Inputs or internal values
e Observability

— Examine system/environment values at any time

 Debugging

— Can stop simulation at any point and:
* Observe internal values

* Modify system/environment values before restarting

— Can step through small intervals (i.e., 500 nanoseconds)

Disadvantages

e Simulation setup time
— Often has complex external environments
— Could spend more time modeling environment than system

* Models likely incomplete
— Some environment behavior undocumented if complex environment
— May not model behavior correctly

* Simulation speed much slower than actual execution

— Sequentializing parallel design
* |C: gates operate in parallel
* Simulation: analyze inputs, generate outputs for each gate 1 at time
— Several programs added between simulated system and real hardware

* 1 simulated operation:
— =10 to 100 simulator operations
— =100 to 10,000 operating system operations
— =1,000 to 100,000 hardware operations

Simulation speed

* Relative speeds of different types of
simulation/emulation
— 1 hour actual execution of SOC

* = 1.2 years instruction-set simulation
* = 10,000,000 hours gate-level simulation

1 | 1
x IFPGA Noliflay
x10Ardware 4

X100/ HyRugheNt dalst
x100,/ _imstnédtion-set Wrths

x1Q8p cyelatatewrate VLY
x1,000,/ registemiiparder-level HDL vagrd
x1®660 imuBaierevel HD Nfetime
,000 simulation millenni

um

Overcoming long simulation time

e Reduce amount of real time simulated

— 1 msec execution instead of 1 hour
 0.001sec * 10,000,000 = 10,000 sec = 3 hours

— Reduced confidence
* 1 msec of cruise controller operation tells us little

e Faster simulator
— Emulators
» Special hardware for simulations

— Less precise/accurate simulators
* Exchange speed for observability/controllability

Reducing precision/accuracy

 Don’t need gate-level analysis for all simulations
— E.g., cruise control
* Don’t care what happens at every input/output of each logic gate
— Simulating RT components ~10x faster
— Cycle-based simulation ~100x faster

e Accurate at clock boundaries only
* No information on signal changes between boundaries

e Faster simulator often combined with reduction in real time

— If willing to simulate for 10 hours
e Use instruction-set simulator

* Real execution time simulated
— 10 hours * 1 /10,000
— =0.001 hour
— =3.6 seconds

Hardware/software co-simulation

Variety of simulation approaches exist
— From very detailed
e E.g., gate-level model
— To very abstract
e E.g., instruction-level model
Simulation tools evolved separately for hardware/software

— Recall separate design evolution
— Software (GPP)

* Typically with instruction-set simulator (ISS)
— Hardware (SPP)

e Typically with models in HDL environment

Integration of GPP/SPP on single IC creating need for merging
simulation tools

Integrating GPP/SPP simulations

* Simple/naive way
— HDL model of microprocessor
* Runs system software
* Much slower than ISS
* Less observable/controllable than ISS

— HDL models of SPPs
— Integrate all models
* Hardware-software co-simulator
— |ISS for microprocessor
— HDL model for SPPs
— Create communication between simulators
— Simulators run separately except when transferring data

— Faster
— Though, frequent communication between ISS and HDL model slows it down

Minimizing communication

e Memory shared between GPP and SPPs

— Where should memory go?

— In ISS
* HDL simulator must stall for memory access

— In HDL?
* |SS must stall when fetching each instruction

* Model memory in both ISS and HDL

— Most accesses by each model unrelated to other’s accesses
* No need to communicate these between models

— Co-simulator ensures consistency of shared data
— Huge speedups (100x or more) reported with this technique

Emulators

* General physical device system mapped to
— Microprocessor emulator
* Microprocessor IC with some monitoring, control circuitry
— SPP emulator
* FPGAs (10s to 100s)
— Usually supports debugging tasks
* Created to help solve simulation disadvantages
— Mapped relatively quickly
* Hours, days
— Can be placed in real environment

* No environment setup time
* No incomplete environment

— Typically faster than simulation
* Hardware implementation

Disadvantages

 Still not as fast as real implementations

— E.g., emulated cruise-control may not respond fast
enough to keep control of car

* Mapping still time consuming
— E.g., mapping complex SOC to 10 FPGAs

 Just partitioning into 10 parts could take weeks

e Can be very expensive

— Top-of-the-line FPGA-based emulator: $100,000 to
SImill
— Leads to resource bottleneck
e Can maybe only afford 1 emulator
e Groups wait days, weeks for other group to finish using

Reuse: intellectual property cores

 Commercial off-the-shelf (COTS) components
— Predesigned, prepackaged ICs
— Implements GPP or SPP
— Reduces design/debug time
— Have always been available
e System-on-a-chip (SOC)
— All components of system implemented on single chip
— Made possible by increasing IC capacities

— Changing the way COTS components sold

* As intellectual property (IP) rather than actual IC
— Behavioral, structural, or physical descriptions
— Processor-level components known as cores

* SOC built by integrating multiple descriptions

Cores

* SOft Core Gajski’s Y-chart
— Synthesizable behavioral
description Structural Behavior
— Typically written in HDL Processors, Sequential
(VHDL/Verilog) mREsiess, FUs, Repragfams
 Firm core MUXﬁates, flip- Loéf@nSfe;S
ops - ions/FS
— Structural description P> Transis Tra@ﬂf@ﬂ
tors Y fudétions
— Typically provided in HDL Cell
| Mydut
[J
Hard core + sip
— Physical description 1 Boar
— Provided in variety of physical Physiéls

layout file formats al

Advantages/disadvantages of hard
core

e Ease of use

— Developer already designed and tested core
e Can use right away
e Can expect to work correctly

* Predictability
— Size, power, performance predicted accurately
* Not easily mapped (retargeted) to different
process

— E.g., core available for vendor X’s 0.25 micrometer
CMOS process

e Can’t use with vendor X’s 0.18 micrometer process
e Can’t use with vendorY

Advantages/disadvantages of soft/firm
cores

e Soft cores
— Can be synthesized to nearly any technology

— Can optimize for particular use

* E.g., delete unused portion of core
— Lower power, smaller designs

— Requires more design effort
— May not work in technology not tested for
— Not as optimized as hard core for same processor

* Firm cores

— Compromise between hard and soft cores
* Some retargetability
* Limited optimization
* Better predictability/ease of use

New challenges to processor providers

e Cores have dramatically changed business model

— Pricing models

* Past
— Vendors sold product as IC to designers
— Designers must buy any additional copies
» Could not (economically) copy from original
e Today
— Vendors can sell as IP
— Designers can make as many copies as needed
* Vendor can use different pricing models
— Royalty-based model
» Similar to old IC model
» Designer pays for each additional model
— Fixed price model
» One price for IP and as many copies as needed
— Many other models used

Past

IP protection

— lllegally copying IC very difficult

Today

Reverse engineering required tremendous, deliberate effort
“Accidental” copying not possible

— Cores sold in electronic format

Deliberate/accidental unauthorized copying easier
Safeguards greatly increased
Contracts to ensure no copying/distributing

Encryption techniques
— limit actual exposure to IP

Watermarking
— determines if particular instance of processor was copied
— whether copy authorized

New challenges to processor users

* Licensing arrangements
— Not as easy as purchasing IC

— More contracts enforcing pricing model and IP protection
* Possibly requiring legal assistance

* Extra design effort

— Especially for soft cores
* Must still be synthesized and tested
* Minor differences in synthesis tools can cause problems

* Verification requirements more difficult
— Extensive testing for synthesized soft cores and soft/firm cores mapped to particular
technology
* Ensure correct synthesis
* Timing and power vary between implementations

— Early verification critical

* Cores buried within IC
e Cannot simply replace bad core

Design process model

Describes order that design steps are
processed

Behavior description step
Behavior to structure conversion step

Mapping structure to physical implementation
step

Waterfall model

Proceed to next step only after current step
completed

Spiral model

Proceed through 3 steps in order but with less
detail

Repeat 3 steps gradually increasing detail
Keep repeating until desired system obtained

Becoming extremely popular (hardware &
software development)

Waterfall desigh model

Behavioral

\

Structural

\

Physical

Spiral design model

Structural

Behavioral

Physical

Waterfall method

Not very realistic

— Bugs often found in later steps that must be fixed in
earlier step

* E.g., forgot to handle certain input condition

— Prototype often needed to know complete desired
behavior

* E.g, customer adds features after product demo

— System specifications commonly change

* E.g., to remain competitive by reducing power, size
— Certain features dropped

Unexpected iterations back through 3 steps
cause missed deadlines

— Lost revenues

— May never make it to market

Waterfall desigh model

Behavioral

\

Structural

\

Physical

Spiral method

First iteration of 3 steps incomplete

Much faster, though

— End up with prototype
* Use to test basic functions
* Get idea of functions to add/remove

.) Spiral design model
— Original iteration experience helps in following

iterations of 3 steps Structural Behavioral

Must come up with ways to obtain structure and
physical implementations quickly

— E.g., FPGAs for prototype
* silicon for final product
— May have to use more tools
» Extra effort/cost
Could require more time than waterfall method
— If correct implementation first time with waterfall

Physical

General-purpose processor design
models

* Previous slides focused on SPPs

* Can apply equally to GPPs

— Waterfall model
e Structure developed by particular company
* Acquired by embedded system designer
* Designer develops software (behavior)
* Designer maps application to architecture
— Compilation
— Manual design
— Spiral-like model

* Beginning to be applied by embedded system designers

Spiral-like model

Designer develops or acquires architecture
Develops application(s)

Maps application to architecture

Analyzes design metrics

: Y-chart
Now makes choice
— Modify mapping Architecture Application(s)
— Modify application(s) to better suit architecture \ /
— Modify architecture to better suit application(s) [Mapping
* Not as difficult now |
— Maturation of synthesis/compilers LAnaIysis \j

— IPs can be tuned

Continue refining to lower abstraction level until
particular implementation chosen

Summary

Design technology seeks to reduce gap between
|C capacity growth and designher productivity
growth

Synthesis has changed digital design

Increased IC capacity means sw/hw components
coexist on one chip

Design paradigm shift to core-based design
Simulation essential but hard
Spiral design process is popular

