
Unit-V
IC and Design TechnologyIC and Design Technology

Contents
IC Technology:

• Introduction

• Full-Custom (VLSI) Technology

• Semicustom(ASIC) IC Technology

• Programmable Logic Devices(PLD) IC Technology• Programmable Logic Devices(PLD) IC Technology

Design Technology:

• Automation: Synthesis

• Verification: Hardware Software Co-simulation

• Reuse: Intellectual Property cores

• Design Process Models

Introduction
CMOS transistor:
• Source, Drain

– Diffusion area where electrons can flow
– Can be connected to metal contacts (via’s)

• Gate
– Polysilicon area where control voltage is applied

• Oxide

3

• Oxide
– Si O2 Insulator so the gate voltage can’t leak

• Every dimension of the MOSFET has to scale
– (PMOS) Gate oxide has to scale down to

• Increase gate capacitance
• Reduce leakage current from S to D
• Pinch off current from source to drain

– Current gate oxide thickness is about 2.5-3nm

4

– Current gate oxide thickness is about 2.5-3nm
• That’s about 25 atoms!!!

source drain
oxide
gate

IC package IC
channel

Silicon substrate

5

• FinFET has been manufactured to
18nm
– Still acts as a very good transistor

• Simulation shown that it can be scaled
to 10nm

6

to 10nm
– Quantum effect start to kick in

• Reduce mobility by ~10%

– Ballistic transport become significant
• Increase current by about ~20%

NAND

• Metal layers for routing (~10)
• PMOS don’t like 0
• NMOS don’t like 1
• A stick diagram form the basis for mask sets

7

• A stick diagram form the basis for mask sets

Silicon manufacturing steps
• Tape out

– Send design to manufacturing
• Spin

– One time through the manufacturing process
• Photolithography

– Drawing patterns by using photoresist to form barriers for deposition

8

Full Custom

• Very Large Scale Integration (VLSI)
• Placement

– Place and orient transistors

• Routing
– Connect transistors

9

– Connect transistors

• Sizing
– Make fat, fast wires or thin, slow wires
– May also need to size buffer

• Design Rules
– “simple” rules for correct circuit function

• Metal/metal spacing, min poly width…

Full Custom
• Best size, power, performance
• Hand design

– Horrible time-to-market/flexibility/NRE cost…
– Reserve for the most important units in a processor

• ALU, Instruction fetch…

• Physical design tools

10

• Physical design tools
– Less optimal, but faster…

Semi-Custom

• Gate Array
– Array of prefabricated gates
– “place” and route
– Higher density, faster time-to-market
– Does not integrate as well with full-custom

11

– Does not integrate as well with full-custom

• Standard Cell
– A library of pre-designed cell
– Place and route
– Lower density, higher complexity
– Integrate great with full-custom

Semi-Custom

• Most popular design style

• Jack of all trade
– Good

12

• Power, time-to-market,
performance, NRE cost, per-unit
cost, area…

• Master of none
– Integrate with full custom for

critical regions of design

13

Programmable Logic Device
• Programmable Logic Device

– Programmable Logic Array, Programmable Array Logic, Field Programmable Gate
Array

• All layers already exist
– Designers can purchase an IC
– To implement desired functionality

• Connections on the IC are either created or destroyed to implement

14

• Connections on the IC are either created or destroyed to implement

• Benefits
– Very low NRE costs
– Great time to market

• Drawback
– High unit cost, bad for large volume
– Power

• Except special PLA
– slower

1600 usable gate, 7.5 ns
$7 list price

Xilinx FPGA

15

Configurable Logic Block (CLB)

16

I/O Block

17

Design TechnologyDesign Technology

• Design task
– Define system functionality
– Convert functionality to physical implementation while

• Satisfying constrained metrics
• Optimizing other design metrics

Introduction

19

• Designing embedded systems is hard
– Complex functionality

• Millions of possible environment scenarios
• Competing, tightly constrained metrics

– Productivity gap
• As low as 10 lines of code or 100 transistors produced per day

Improving productivity
• Design technologies developed to improve productivity
• We focus on technologies advancing hardware/software unified

view
– Automation

• Program replaces manual design
• Synthesis

Specificat
ionAutoma

tion

20

• Synthesis

– Reuse
• Predesigned components
• Cores
• General-purpose and single-purpose processors on single IC

– Verification
• Ensuring correctness/completeness of each design step
• Hardware/software co-simulation

ReuseImplement
ation

tion

Verificati
on

Automation: synthesis
• Early design mostly hardware
• Software complexity increased with advent

of general-purpose processor
• Different techniques for software design

and hardware design
– Caused division of the two fields

• Design tools evolve for higher levels of

Sequential program code (e.g., C, VHDL)

Compilers

Behavioral synthesis
(1990s)

The codesign ladder

21

• Design tools evolve for higher levels of
abstraction
– Different rate in each field

• Hardware/software design fields rejoining
– Both can start from behavioral description

in sequential program model
– 30 years longer for hardware design to

reach this step in the ladder
• Many more design dimensions
• Optimization critical

Implementation

Assembly instructions

Machine instructions Logic gates

Logic equations / FSM's

Register transfers

Compilers
(1960s,1970s)

Assemblers, linkers
(1950s, 1960s)

RT synthesis
(1980s, 1990s)

Logic synthesis
(1970s, 1980s)

Microprocessor plus
program bits

VLSI, ASIC, or PLD
implementation

Hardware/software parallel evolution
• Software design evolution

– Machine instructions
– Assemblers

• convert assembly programs into machine
instructions

– Compilers
• translate sequential programs into assembly

• Hardware design evolution

Sequential program code (e.g., C, VHDL)

Compilers

Behavioral synthesis
(1990s)

The codesign ladder

22

• Hardware design evolution
– Interconnected logic gates
– Logic synthesis

• converts logic equations or FSMs into gates
– Register-transfer (RT) synthesis

• converts FSMDs into FSMs, logic equations,
predesigned RT components (registers,
adders, etc.)

– Behavioral synthesis
• converts sequential programs into FSMDs

Implementation

Assembly instructions

Machine instructions Logic gates

Logic equations / FSM's

Register transfers

Compilers
(1960s,1970s)

Assemblers, linkers
(1950s, 1960s)

RT synthesis
(1980s, 1990s)

Logic synthesis
(1970s, 1980s)

Microprocessor plus
program bits

VLSI, ASIC, or PLD
implementation

Increasing abstraction level
• Higher abstraction level focus of hardware/software design evolution

– Description smaller/easier to capture
• E.g., Line of sequential program code can translate to 1000 gates

– Many more possible implementations available
• (a) Like flashlight, the higher above the ground, the more ground illuminated

– Sequential program designs may differ in performance/transistor count by orders of
magnitude

23

– Logic-level designs may differ by only power of 2
• (b) Design process proceeds to lower abstraction level, narrowing in on single

implementation

(a) (b)

idea

implemen
tation

back-of-the-envelope
sequential program
register-transfers
logic

m
od

el
in

g
co

st
 in

cr
ea

se
s

op
po

rt
un

iti
es

 d
ec

re
as

e
idea

implemen
tation

Synthesis
• Automatically converting system’s behavioral description to a structural

implementation
– Complex whole formed by parts
– Structural implementation must optimize design metrics

• More expensive, complex than compilers
– Cost = $100s to $10,000s

24

– Cost = $100s to $10,000s
– User controls 100s of synthesis options
– Optimization critical

• Otherwise could use software

– Optimizations different for each user
– Run time = hours, days

Gajski’s Y-chart
• Each axis represents type of description

– Behavioral
• Defines outputs as function of inputs
• Algorithms but no implementation

– Structural
• Implements behavior by connecting

components with known behavior
– Physical

BehaviorStructural
Processors,
memoriesRegisters, FUs,

MUXsGates, flip-

Sequential
programsRegister

transfersLogic

25

– Physical
• Gives size/locations of components and

wires on chip/board

• Synthesis converts behavior at given level
to structure at same level or lower
– E.g.,

• FSM → gates, flip-flops (same level)
• FSM → transistors (lower level)
• FSM X registers, FUs (higher level)
• FSM X processors, memories (higher level) Physic

al

MUXsGates, flip-
flops Transis

tors

transfersLogic
equations/FS
M

Transfer
functions

Cell
LayoutModu
lesChip
sBoar
ds

Logic synthesis
• Logic-level behavior to structural implementation

– Logic equations and/or FSM to connected gates
• Combinational logic synthesis

– Two-level minimization (Sum of products/product of sums)
• Best possible performance

– Longest path = 2 gates (AND gate + OR gate/OR gate + AND gate)
• Minimize size

– Minimum cover

26

– Minimum cover
– Minimum cover that is prime
– Heuristics

– Multilevel minimization
• Trade performance for size
• Pareto-optimal solution

– Heuristics

• FSM synthesis
– State minimization
– State encoding

Two-level minimization
• Represent logic function as sum of

products (or product of sums)
– AND gate for each product
– OR gate for each sum

• Gives best possible performance

F = abc'd' + a'b'cd +
a'bcd + ab'cd

Sum of products

Direct implementation

27

• Gives best possible performance
– At most 2 gate delay

• Goal: minimize size
– Minimum cover

• Minimum # of AND gates (sum of products)

– Minimum cover that is prime
• Minimum # of inputs to each AND gate (sum of

products)

4 4-input AND
gates and
1 4-input OR gate
→ 40 transistors

a

b

c

d
F

Direct implementation

Minimum cover
• Minimum # of AND gates (sum of products)
• Literal: variable or its complement

– a or a’, b or b’, etc.

• Minterm: product of literals
– Each literal appears exactly once

• abc’d’, ab’cd, a’bcd, etc.

28

• abc’d’, ab’cd, a’bcd, etc.

• Implicant: product of literals
– Each literal appears no more than once

• abc’d’, a’cd, etc.

– Covers 1 or more minterms
• a’cd covers a’bcd and a’b’cd

• Cover: set of implicants that covers all minterms of function
• Minimum cover: cover with minimum # of implicants

Minimum cover: K-map approach
• Karnaugh map (K-map)

– 1 represents minterm
– Circle represents implicant

• Minimum cover
– Covering all 1’s with min # of

11

10 0 0
0 0 1 0
1 0 0 0
0 0 0

ab
cd

00

01

11

10

00 01 10

1

10 0 0
0 0 1 0
1 0 0 0
0 0 0

ab
cd

00

01

11

10

00 01 11 10

1

K-map: sum of products K-map: minimum cover

29

– Covering all 1’s with min # of
circles

– Example: direct vs. min cover
• Less gates

– 4 vs. 5

• Less transistors
– 28 vs. 40

F=abc'd' + a'cd + ab'cd

a
b
c

d

F
2 4-input AND
gate
1 3-input AND
gates
1 4 input OR
gate
→ 28
transistors

Minimum cover

Minimum cover implementation

Minimum cover that is prime
• Minimum # of inputs to AND gates
• Prime implicant

– Implicant not covered by any other
implicant

– Max-sized circle in K-map

• Minimum cover that is prime

10 0 0
0 0 1 0
1 0 0 0
0 0 0

ab
cd

00

01

11

10

00 01 11 10

1

K-map: minimum cover that is prime

30

• Minimum cover that is prime
– Covering with min # of prime implicants
– Min # of max-sized circles
– Example: prime cover vs. min cover

• Same # of gates
– 4 vs. 4

• Less transistors
– 26 vs. 28

Minimum cover that is prime

F=abc'd' + a'cd + b'cd

1 4-input AND
gate
2 3-input AND
gates
1 4 input OR
gate
→ 26

F

a
b
c

d

Implementation

Minimum cover: heuristics

• K-maps give optimal solution every time
– Functions with > 6 inputs too complicated
– Use computer-based tabular method

• Finds all prime implicants
• Finds min cover that is prime

31

• Also optimal solution every time
• Problem: 2n minterms for n inputs

– 32 inputs = 4 billion minterms
– Exponential complexity

• Heuristic
– Solution technique where optimal solution not guaranteed
– Hopefully comes close

Heuristics: iterative improvement
• Start with initial solution

– i.e., original logic equation
• Repeatedly make modifications toward better solution
• Common modifications

– Expand
• Replace each nonprime implicant with a prime implicant covering it
• Delete all implicants covered by new prime implicant

32

• Delete all implicants covered by new prime implicant
– Reduce

• Opposite of expand
– Reshape

• Expands one implicant while reducing another
• Maintains total # of implicants

– Irredundant
• Selects min # of implicants that cover from existing implicants

• Synthesis tools differ in modifications used and the order they are used

Multilevel logic minimization
• Trade performance for size

– Increase delay for lower # of gates
– Gray area represents all possible

solutions
– Circle with X represents ideal solution

• Generally not possible

33

• Generally not possible
– 2-level gives best performance

• max delay = 2 gates
• Solve for smallest size

– Multilevel gives pareto-optimal
solution
• Minimum delay for a given size
• Minimum size for a given delay

size

de
la

y

2-level
minim.

Example
• Minimized 2-level logic function:

– F = adef + bdef + cdef + gh
– Requires 5 gates with 18 total gate inputs

• 4 ANDS and 1 OR
• After algebraic manipulation:

– F = (a + b + c)def + gh
– Requires only 4 gates with 11 total gate inputs

F

b

c
e

a
d

f
g

2-level minimized

34

– Requires only 4 gates with 11 total gate inputs
• 2 ANDS and 2 ORs

– Less inputs per gate
– Assume gate inputs = 2 transistors

• Reduced by 14 transistors
– 36 (18 * 2) down to 22 (11 * 2)

– Sacrifices performance for size
• Inputs a, b, and c now have 3-gate delay

• Iterative improvement heuristic commonly
used

g
h

F

b
c

e

a

d
f
g
h

multilevel minimized

FSM synthesis
• FSM to gates
• State minimization

– Reduce # of states
• Identify and merge equivalent states

– Outputs, next states same for all possible inputs
– Tabular method gives exact solution

35

– Tabular method gives exact solution
» Table of all possible state pairs
» If n states, n2 table entries
» Thus, heuristics used with large # of states

• State encoding
– Unique bit sequence for each state
– If n states, log2(n) bits
– n! possible encodings
– Thus, heuristics common

Technology mapping

• Library of gates available for implementation
– Simple

• only 2-input AND,OR gates

– Complex
• various-input AND,OR,NAND,NOR,etc. gates

36

• Efficiently implemented meta-gates (i.e., AND-OR-INVERT,MUX)

• Final structure consists of specified library’s components only
• If technology mapping integrated with logic synthesis

– More efficient circuit
– More complex problem
– Heuristics required

Complexity impact on user
• As complexity grows, heuristics used
• Heuristics differ tremendously among synthesis tools

– Computationally expensive
• Higher quality results
• Variable optimization effort settings
• Long run times (hours, days)
• Requires huge amounts of memory

37

• Requires huge amounts of memory
• Typically needs to run on servers, workstations

– Fast heuristics
• Lower quality results
• Shorter run times (minutes, hours)
• Smaller amount of memory required
• Could run on PC

• Super-linear-time (i.e. n3) heuristics usually used
– User can partition large systems to reduce run times/size
– 1003 > 503 + 503 (1,000,000 > 250,000)

Integrating logic design and physical
design

• Past
– Gate delay much greater than wire delay
– Thus, performance evaluated as # of levels

of gates only

• Today
– Gate delay shrinking as feature size Wire

38

– Gate delay shrinking as feature size
shrinking

– Wire delay increasing
• Performance evaluation needs wire length

– Transistor placement (needed for wire
length) domain of physical design

– Thus, simultaneous logic synthesis and
physical design required for efficient
circuits

Wire

Transistor

D
el

ay

Reduced feature size

Register-transfer synthesis
• Converts FSMD to custom single-purpose processor

– Datapath
• Register units to store variables

– Complex data types
• Functional units

– Arithmetic operations
• Connection units

39

• Connection units
– Buses, MUXs

– FSM controller
• Controls datapath

– Key sub problems:
• Allocation

– Instantiate storage, functional, connection units
• Binding

– Mapping FSMD operations to specific units

Behavioral synthesis
• High-level synthesis
• Converts single sequential program to single-purpose processor

– Does not require the program to schedule states

• Key sub problems
– Allocation
– Binding

40

– Binding
– Scheduling

• Assign sequential program’s operations to states
• Conversion template given in Ch. 2

• Optimizations important
– Compiler

• Constant propagation, dead-code elimination, loop unrolling

– Advanced techniques for allocation, binding, scheduling

System synthesis
• Convert 1 or more processes into 1 or more processors

(system)
– For complex embedded systems

• Multiple processes may provide better performance/power
• May be better described using concurrent sequential programs

• Tasks

41

• Tasks
– Transformation

• Can merge 2 exclusive processes into 1 process
• Can break 1 large process into separate processes
• Procedure inlining
• Loop unrolling

– Allocation
• Essentially design of system architecture

– Select processors to implement processes
– Also select memories and busses

System synthesis

• Tasks (cont.)
– Partitioning

• Mapping 1 or more processes to 1 or more processors
• Variables among memories
• Communications among buses

Scheduling

42

– Scheduling
• Multiple processes on a single processor
• Memory accesses
• Bus communications

– Tasks performed in variety of orders
– Iteration among tasks common

System synthesis
• Synthesis driven by constraints

– E.g.,
• Meet performance requirements at minimum cost

– Allocate as much behavior as possible to general-purpose processor
» Low-cost/flexible implementation

– Minimum # of SPPs used to meet performance

• System synthesis for GPP only (software)

43

• System synthesis for GPP only (software)
– Common for decades

• Multiprocessing
• Parallel processing
• Real-time scheduling

• Hardware/software codesign
– Simultaneous consideration of GPPs/SPPs during synthesis
– Made possible by maturation of behavioral synthesis in 1990’s

Temporal vs. spatial thinking

• Design thought process changed by evolution of synthesis
• Before synthesis

– Designers worked primarily in structural domain
• Connecting simpler components to build more complex systems

– Connecting logic gates to build controller

44

– Connecting logic gates to build controller
– Connecting registers, MUXs, ALUs to build datapath

– “capture and simulate” era
• Capture using CAD tools
• Simulate to verify correctness before fabricating

– Spatial thinking
• Structural diagrams
• Data sheets

Temporal vs. spatial thinking

• After synthesis
– “describe-and-synthesize” era
– Designers work primarily in behavioral domain
– “describe and synthesize” era

• Describe FSMDs or sequential programs

45

Describe FSMDs or sequential programs
• Synthesize into structure

– Temporal thinking
• States or sequential statements have relationship over time

• Strong understanding of hardware structure still important
– Behavioral description must synthesize to efficient structural

implementation

Verification

• Ensuring design is correct and complete
– Correct

• Implements specification accurately

– Complete
• Describes appropriate output to all relevant input

46

• Formal verification
– Hard
– For small designs or verifying certain key properties only

• Simulation
– Most common verification method

Formal verification

• Analyze design to prove or disprove certain properties
• Correctness example

– Prove ALU structural implementation equivalent to behavioral
description
• Derive Boolean equations for outputs

47

• Derive Boolean equations for outputs
• Create truth table for equations
• Compare to truth table from original behavior

• Completeness example
– Formally prove elevator door can never open while elevator is moving

• Derive conditions for door being open
• Show conditions conflict with conditions for elevator moving

Simulation

• Create computer model of design
– Provide sample input
– Check for acceptable output

• Correctness example
– ALU

48

– ALU
• Provide all possible input combinations
• Check outputs for correct results

• Completeness example
– Elevator door closed when moving

• Provide all possible input sequences
• Check door always closed when elevator moving

Increases confidence
• Simulating all possible input sequences impossible for most

systems
– E.g., 32-bit ALU

• 232 * 232 = 264 possible input combinations
• At 1 million combinations/sec
• ½ million years to simulate
• Sequential circuits even worse

49

• Sequential circuits even worse
• Can only simulate tiny subset of possible inputs

– Typical values
– Known boundary conditions

• E.g., 32-bit ALU
– Both operands all 0’s
– Both operands all 1’s

• Increases confidence of correctness/completeness
• Does not prove

Advantages over physical
implementation

• Controllability
– Control time

• Stop/start simulation at any time

– Control data values
• Inputs or internal values

50

• Observability
– Examine system/environment values at any time

• Debugging
– Can stop simulation at any point and:

• Observe internal values
• Modify system/environment values before restarting

– Can step through small intervals (i.e., 500 nanoseconds)

Disadvantages
• Simulation setup time

– Often has complex external environments
– Could spend more time modeling environment than system

• Models likely incomplete
– Some environment behavior undocumented if complex environment
– May not model behavior correctly

• Simulation speed much slower than actual execution

51

• Simulation speed much slower than actual execution
– Sequentializing parallel design

• IC: gates operate in parallel
• Simulation: analyze inputs, generate outputs for each gate 1 at time

– Several programs added between simulated system and real hardware
• 1 simulated operation:

– = 10 to 100 simulator operations
– = 100 to 10,000 operating system operations
– = 1,000 to 100,000 hardware operations

Simulation speed

• Relative speeds of different types of
simulation/emulation
– 1 hour actual execution of SOC

• = 1.2 years instruction-set simulation
• = 10,000,000 hours gate-level simulation

52

• = 10,000,000 hours gate-level simulation

10,000
,000

gate-level HDL
simulation

register-transfer-level HDL
simulation

cycle-accurate
simulation

instruction-set
simulation

throughput
model

hardware
emulation

FPGA 1 day
1
hour

4
days

1
10

100
100
0100

00100,
0001,000,

000

IC

1.4
months1.2

years12
years>1

lifetime1
millenni
um

Overcoming long simulation time

• Reduce amount of real time simulated
– 1 msec execution instead of 1 hour

• 0.001sec * 10,000,000 = 10,000 sec = 3 hours
– Reduced confidence

• 1 msec of cruise controller operation tells us little

53

• 1 msec of cruise controller operation tells us little

• Faster simulator
– Emulators

• Special hardware for simulations
– Less precise/accurate simulators

• Exchange speed for observability/controllability

Reducing precision/accuracy

• Don’t need gate-level analysis for all simulations
– E.g., cruise control

• Don’t care what happens at every input/output of each logic gate
– Simulating RT components ~10x faster
– Cycle-based simulation ~100x faster

• Accurate at clock boundaries only

54

• Accurate at clock boundaries only
• No information on signal changes between boundaries

• Faster simulator often combined with reduction in real time
– If willing to simulate for 10 hours

• Use instruction-set simulator
• Real execution time simulated

– 10 hours * 1 / 10,000
– = 0.001 hour
– = 3.6 seconds

Hardware/software co-simulation

• Variety of simulation approaches exist
– From very detailed

• E.g., gate-level model
– To very abstract

• E.g., instruction-level model

• Simulation tools evolved separately for hardware/software

55

• Simulation tools evolved separately for hardware/software
– Recall separate design evolution
– Software (GPP)

• Typically with instruction-set simulator (ISS)
– Hardware (SPP)

• Typically with models in HDL environment

• Integration of GPP/SPP on single IC creating need for merging
simulation tools

Integrating GPP/SPP simulations
• Simple/naïve way

– HDL model of microprocessor
• Runs system software
• Much slower than ISS
• Less observable/controllable than ISS

– HDL models of SPPs
– Integrate all models

56

– Integrate all models
• Hardware-software co-simulator

– ISS for microprocessor
– HDL model for SPPs
– Create communication between simulators
– Simulators run separately except when transferring data
– Faster
– Though, frequent communication between ISS and HDL model slows it down

Minimizing communication

• Memory shared between GPP and SPPs
– Where should memory go?
– In ISS

• HDL simulator must stall for memory access

– In HDL?

57

In HDL?
• ISS must stall when fetching each instruction

• Model memory in both ISS and HDL
– Most accesses by each model unrelated to other’s accesses

• No need to communicate these between models

– Co-simulator ensures consistency of shared data
– Huge speedups (100x or more) reported with this technique

Emulators
• General physical device system mapped to

– Microprocessor emulator
• Microprocessor IC with some monitoring, control circuitry

– SPP emulator
• FPGAs (10s to 100s)

– Usually supports debugging tasks
• Created to help solve simulation disadvantages

58

• Created to help solve simulation disadvantages
– Mapped relatively quickly

• Hours, days
– Can be placed in real environment

• No environment setup time
• No incomplete environment

– Typically faster than simulation
• Hardware implementation

Disadvantages

• Still not as fast as real implementations
– E.g., emulated cruise-control may not respond fast

enough to keep control of car
• Mapping still time consuming

– E.g., mapping complex SOC to 10 FPGAs
• Just partitioning into 10 parts could take weeks

59

• Just partitioning into 10 parts could take weeks
• Can be very expensive

– Top-of-the-line FPGA-based emulator: $100,000 to
$1mill

– Leads to resource bottleneck
• Can maybe only afford 1 emulator
• Groups wait days, weeks for other group to finish using

Reuse: intellectual property cores

• Commercial off-the-shelf (COTS) components
– Predesigned, prepackaged ICs
– Implements GPP or SPP
– Reduces design/debug time
– Have always been available

• System-on-a-chip (SOC)

60

• System-on-a-chip (SOC)
– All components of system implemented on single chip
– Made possible by increasing IC capacities
– Changing the way COTS components sold

• As intellectual property (IP) rather than actual IC
– Behavioral, structural, or physical descriptions
– Processor-level components known as cores

• SOC built by integrating multiple descriptions

Cores
• Soft core

– Synthesizable behavioral
description

– Typically written in HDL
(VHDL/Verilog)

• Firm core

BehaviorStructural
Processors,
memoriesRegisters, FUs,

MUXsGates, flip-

Sequential
programsRegister

transfersLogic

Gajski’s Y-chart

61

• Firm core
– Structural description
– Typically provided in HDL

• Hard core
– Physical description
– Provided in variety of physical

layout file formats
Physic
al

MUXsGates, flip-
flops Transis

tors

transfersLogic
equations/FS
M

Transfer
functions

Cell
LayoutModu
lesChip
sBoar
ds

Advantages/disadvantages of hard
core

• Ease of use
– Developer already designed and tested core

• Can use right away
• Can expect to work correctly

• Predictability
– Size, power, performance predicted accurately

62

– Size, power, performance predicted accurately
• Not easily mapped (retargeted) to different

process
– E.g., core available for vendor X’s 0.25 micrometer

CMOS process
• Can’t use with vendor X’s 0.18 micrometer process
• Can’t use with vendor Y

Advantages/disadvantages of soft/firm
cores

• Soft cores
– Can be synthesized to nearly any technology
– Can optimize for particular use

• E.g., delete unused portion of core
– Lower power, smaller designs

– Requires more design effort

63

– Requires more design effort
– May not work in technology not tested for
– Not as optimized as hard core for same processor

• Firm cores
– Compromise between hard and soft cores

• Some retargetability
• Limited optimization
• Better predictability/ease of use

New challenges to processor providers
• Cores have dramatically changed business model

– Pricing models
• Past

– Vendors sold product as IC to designers
– Designers must buy any additional copies

» Could not (economically) copy from original
• Today

64

• Today
– Vendors can sell as IP
– Designers can make as many copies as needed

• Vendor can use different pricing models
– Royalty-based model

» Similar to old IC model
» Designer pays for each additional model

– Fixed price model
» One price for IP and as many copies as needed

– Many other models used

IP protection

• Past
– Illegally copying IC very difficult

• Reverse engineering required tremendous, deliberate effort
• “Accidental” copying not possible

• Today
– Cores sold in electronic format

65

– Cores sold in electronic format
• Deliberate/accidental unauthorized copying easier
• Safeguards greatly increased
• Contracts to ensure no copying/distributing
• Encryption techniques

– limit actual exposure to IP
• Watermarking

– determines if particular instance of processor was copied
– whether copy authorized

New challenges to processor users
• Licensing arrangements

– Not as easy as purchasing IC
– More contracts enforcing pricing model and IP protection

• Possibly requiring legal assistance

• Extra design effort
– Especially for soft cores

Must still be synthesized and tested

66

• Must still be synthesized and tested
• Minor differences in synthesis tools can cause problems

• Verification requirements more difficult
– Extensive testing for synthesized soft cores and soft/firm cores mapped to particular

technology
• Ensure correct synthesis
• Timing and power vary between implementations

– Early verification critical
• Cores buried within IC
• Cannot simply replace bad core

Design process model
• Describes order that design steps are

processed
– Behavior description step
– Behavior to structure conversion step
– Mapping structure to physical implementation

step
• Waterfall model

– Proceed to next step only after current step

Behavioral

Structural

Physical

Waterfall design model

67

– Proceed to next step only after current step
completed

• Spiral model
– Proceed through 3 steps in order but with less

detail
– Repeat 3 steps gradually increasing detail
– Keep repeating until desired system obtained
– Becoming extremely popular (hardware &

software development)

Physical

BehavioralStructural

Physical

Spiral design model

Waterfall method
• Not very realistic

– Bugs often found in later steps that must be fixed in
earlier step
• E.g., forgot to handle certain input condition

– Prototype often needed to know complete desired
behavior
• E.g, customer adds features after product demo

Waterfall design model

68

• E.g, customer adds features after product demo
– System specifications commonly change

• E.g., to remain competitive by reducing power, size
– Certain features dropped

• Unexpected iterations back through 3 steps
cause missed deadlines
– Lost revenues
– May never make it to market

Behavioral

Structural

Physical

Spiral method
• First iteration of 3 steps incomplete
• Much faster, though

– End up with prototype
• Use to test basic functions
• Get idea of functions to add/remove

– Original iteration experience helps in following
iterations of 3 steps BehavioralStructural

Spiral design model

69

iterations of 3 steps
• Must come up with ways to obtain structure and

physical implementations quickly
– E.g., FPGAs for prototype

• silicon for final product
– May have to use more tools

• Extra effort/cost

• Could require more time than waterfall method
– If correct implementation first time with waterfall

BehavioralStructural

Physical

General-purpose processor design
models

• Previous slides focused on SPPs
• Can apply equally to GPPs

– Waterfall model
• Structure developed by particular company
• Acquired by embedded system designer

70

• Acquired by embedded system designer
• Designer develops software (behavior)
• Designer maps application to architecture

– Compilation
– Manual design

– Spiral-like model
• Beginning to be applied by embedded system designers

Spiral-like model
• Designer develops or acquires architecture
• Develops application(s)
• Maps application to architecture
• Analyzes design metrics
• Now makes choice

– Modify mapping Architecture Application(s)

Y-chart

71

– Modify mapping
– Modify application(s) to better suit architecture
– Modify architecture to better suit application(s)

• Not as difficult now
– Maturation of synthesis/compilers
– IPs can be tuned

• Continue refining to lower abstraction level until
particular implementation chosen

Architecture Application(s)

Mapping

Analysis

Summary

• Design technology seeks to reduce gap between
IC capacity growth and designer productivity
growth

• Synthesis has changed digital design
Increased IC capacity means sw/hw components

72

• Increased IC capacity means sw/hw components
coexist on one chip

• Design paradigm shift to core-based design
• Simulation essential but hard
• Spiral design process is popular

